Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles
نویسندگان
چکیده
We present a detailed analytical theory for the plasmonic nanoring configuration first proposed by Alù et al. [Opt. Express 14, 1557 (2006)], which is shown to provide negative magnetic permeability and negative index of refraction at infrared and optical frequencies. We show analytically how the nanoring configuration may provide superior performance when compared to some other solutions for optical negative-index materials, offering a more "pure" magnetic response at these high frequencies, which is necessary for lowering the effects of radiation losses and absorption. Sensitivity to losses and the bandwidth of operation of this magnetic inclusion are also investigated in detail and compared with other available setups.
منابع مشابه
DNA-Assembled Nanoparticle Rings Exhibit Electric and Magnetic Resonances at Visible Frequencies
Metallic nanostructures can be used to manipulate light on the subwavelength scale to create tailored optical material properties. Next to electric responses, artificial optical magnetism is of particular interest but difficult to achieve at visible wavelengths. DNA-self-assembly has proved to serve as a viable method to template plasmonic materials with nanometer precision and to produce large...
متن کاملTunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملImpacts of Nanoparticles and Nano Rod Arrays on Optical Generation Rate in Plasmonic-Based Solar Cells
In this article, the effect of plasmonics properties of metal nanorods and nanoparticles on solar cell performance were investigated and simulated. Due to the classic solar cell disadvantages, it seems that a plasmonic solar cell is one of these methods. In plasmonic solar cells, because of plasmonic effect, a high electric field builds around metal nanoparticles so that high conversion efficie...
متن کاملOptical magnetism and negative refraction in plasmonic metamaterials
In this review we describe the challenges and opportunities for creating magnetically active metamaterials in the optical part of the spectrum. The emphasis is on the sub-wavelength periodic metamaterials whose unit cell is much smaller than the optical wavelength. The conceptual differences between microwave and optical metamaterials are demonstrated. We also describe several theoretical techn...
متن کاملPlasmonic optical trap having very large active volume realized with nano-ring structure.
The feasibility of using gold nano-rings as plasmonic nano-optical tweezers is investigated. We found that at a resonant wavelength of λ=785 nm, the nano-ring produces a maximum trapping potential of ~32k(B)T on gold nanoparticles. The existence of multiple potential wells results in a very large active volume of ~10(6) nm(3) for trapping the target particles. The report nano-ring design provid...
متن کامل